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Abstract:  Genetic Programming is a method for evolving
functions that find approximate or exact solutions to
problems.  There are many problems that traditional Genetic
Programming (GP) cannot solve, due to the theoretical
limitations of its paradigm.  A Turing machine (TM) is a
theoretical abstraction that express the extent of the
computational power of algorithms.  Any system that is
Turing complete is sufficiently powerful to recognize all
possible algorithms. GP is not Turing complete.  This paper
will prove that when GP is combined with the technique of
indexed memory, the resulting system is Turing complete.
This means that, in theory, GP with indexed memory can be
used to evolve any algorithm.

I . Introduction

The nature of this paper is theoretical.  There are a wide
variety of issues concerning the evolution of algorithms (as
opposed to the functions of GP).  These issues will only be
touched on briefly at the end of the paper.  This paper makes
no claims on the actual practicality of evolving an arbitrary
algorithm, this paper is about what is theoretically possible.
Also, it should be noted that this proof was chosen for its
simplicity and does not represent how algorithms are likely
to evolve.

This paper assumes very little familiarity with either GP
or indexed memory.   A complete introduction to the topic of
traditional GP can be found in "Genetic Programming: On
the Programming of computers by means of natural
selection." [Koza 1991]   For a discussion of indexed
memory see "The Evolution of Mental Models." [Teller
1994]   What is needed for a full understanding of the proof
in this paper is some knowledge of Turing machines and
Turing completeness.  For a primer on this try "An
Introduction to Automata and Complexity Theory."
[Hopcroft 1979]

 This paper will strive to leave the reader with a solid
sense of the computational completeness of the described
system and a glimmer of the unexplored complexities this
completeness introduces into the field of evolutionary
computation.

II. Genetic Programming

Genetic Programming is a strategy for evolving functions
that perform well on assigned tasks.  These evolved functions
are represented in GP as Lisp-like expressions consisting of
non-terminals (atomic functions) and terminals (e.g. variables
and constants).  Simple GP functions might look like:

¥ (* 2 (IF (= 4 x) ELSE (x/(- 4 x))
THEN (cos (exp (+ x (* (+ 5 6) x))))))

¥ (exp (/ 9 x) (- (+ (+ 9 8) x) 12))

Given a sufficiently expressive set of mathematical
functions, variables, and constants, this type of "language"
can represent many desired functions, such as x3*cos(2*x).
This function might evolve in the following form:

¥ (* (* x (* x x)) (cos (* x 2)))

The process of finding a GP function that is a good or perfect
approximation to the target function can be summarized as
follows.  The population is initialized with a set of randomly
generated individuals. Each member from the current pool of
functions is tested to determine its error on some task.  A
new pool is created in which the functions with lower error
have higher representation.  The new pool is then subjected
to various kinds of recombination.  Two popular varieties are
mutation and crossover.  Over time the most successful
individuals in the population become increasingly accurate
approximations of the correct solution to the task.

This language is not powerful enough to express many
algorithms.  For example, there is a simple procedure for
checking whether a string is of the form 0n1n, but there is
no way to make such a procedure in this kind of Lisp-like
structure.  There is no mechanism for variable length strings
to be shown to the function and no way for the function to
iterate an arbitrary number of times.

We could encode the 0n1n problem by giving the GP
function a series of tests.  The variable x could be used to
give the current character (x = {0,1,2}) where 2 means "end
of string".  The fitness (average success) of the function
could be based on whether it returned a positive or negative
number when it received the 2.  Here the GP environment
might interpret positive numbers as "in the form 0n1n" and
negative numbers as "not in the form 0n1n".  But since each
function has no access to the previous inputs and the
previous inputs (where x was equal to 0 or 1) determine the
correct response when the end of string is reached, this
problem is unsolvable for traditional GP.  In general,
solutions to these kind of problems requires something extra:
memory.

III. Indexed Memory

Indexed memory is a simple addition to the GP paradigm.
Read and Write are added as new non-terminals in the
language.  Each GP function is given access to its own array
of integers, indexed over the integers.   The expression (Read
5) returns an integer in just the same way that (* 5 17) does.
In general, (Read X) returns the integer stored in memory
position X, where X is an integer.   And (Write -19 101)
returns the old value of memory position 101 and has the
side effect of changing the value of memory position 101 to
be -19.  A simple GP function that utilized indexed memory
might be:



(IF (< (Read 4) (Read (Read (+ x 4))))          
THEN (Sqrt (+ (* x 8) 1))  ELSE (* x x))

Using indexed memory, a GP function could save past inputs
and use them in a process like the 0n1n problem.  For each 0
or 1 that the function received, it could store the value in a
memory location.   Then, when x = 2, it could decide
whether to return a positive or negative number based on the
values stored in its memory.  However, since the series of 0's
and 1's can be arbitrarily long and the GP function with
indexed memory is of fixed size, there is a length of strings
above which the function cannot always classify them
correctly.   So memory is necessary, but there is another
element missing from traditional GP: iteration.

IV. Notation

GP plus indexed memory (GP+IM) has a key ingredient that
was missing from GP.  But, for the reason just given, the
procedure for checking 0n1n cannot be represented with any
GP function, even if it contains Read's and Write's.
However, writing such a 0n1n checker using iteration is
possible.

This paper will prove that any algorithm can be written in
the following language:

Repeat
Evaluate < GP+IM function >

Unti l
< Some specific state of the memory >

For the rest of the paper the term "GP+IM machine" will be
used as an abbreviation for this Repeat-Until loop that
evaluates the combination of genetic programming and
indexed memory.  The term "GP+IM function" will refer to
the function inside the Repeat loop that is a traditional GP
function with the addition of indexed memory.

To keep the proof simple, I will use the set of non-
terminals described below.  X , Y, and Z are all either
terminals (constants and variables) or further sub-functions
made up of these same non-terminals.

(IF X THEN Y ELSE Z):  this returns Y if  X is non-
zero otherwise it returns Z . Notice that the test is evaluated
and then either Y or Z is evaluated, but not both.  This is
important because Write has a side effect.

(= X Y):  this returns 1 if the two arguments evaluate to
equal values and 0 otherwise

(AND X Y):  this returns 0 if either argument is zero;
otherwise it returns 1.  Notice here that AND evaluates both
arguments before returning a value.

(ADD X Y):  This returns the addition of X and Y.

(SUB X Y):  This returns X minus Y.

(Read X):  This returns the value of the memory element
specified by indexing the memory array by the value of the
argument (i.e. (READ X) returns Memory[X]).

(Write Y X):  This returns the value of the memory
element specified by indexing the memory array by the value
of the second argument (Memory[X]) and then puts the
value of first argument into the memory position indexed by
the second argument (Memory[X] <=== Y ).

V . The Proof

This section will prove that the GP+IM machine is Turing
complete.  There are several ways this could be shown, but
the approach taken here will be to assume that there is some
arbitrary Turing machine(TM) that we want.  This section
will show how to construct a GP+IM machine that
duplicates the functionality of this arbitrary TM.  This
having been done for an arbitrary TM, this satisfies the claim
that the GP+IM machine is Turing complete.

Since any GP+IM function might be generated randomly
in the first generation, it is sufficient to show that the desired
GP+IM function exists.  The following statement cannot be
over-stressed.  This is not a proof about evolution.
This is a proof about the language in which
genet ical ly  evolved funct ions  (and now
algorithms) are usually written.  As mentioned
before, the issue of how likely one is to generate such a
function at random or through evolution is the topic of
another paper. [Teller, to appear]

Suppose that there is some algorithm T.  This algorithm
can be expressed as a TM.  Any TM, in turn, can be
expressed as a set of seven items:

Q a finite set of allowable states of the machine
G  a finite set of allowable tape symbols
B a special (Blank) tape symbol (member of G)
S a finite set of allowable input symbols (subset of G)
q  a start state (an element of Q)
F  a finite set of final states (subset of Q)
D  a transition function
      ( Q x G  --->  Q x G x {Left, Right} )

So the target Turing machine T has a {QT , GT , BT , ST ,
qT , FT , DT }.  To prove that GP+IM is a Turing Complete
system it is sufficient to construct {QGP+IM , GGP+IM , BGP+IM
, SGP+IM, qGP+IM, FGP+IM, DGP+IM} and to prove the behavioral
isomorphism between them.  The subscript "GP+IM" will
be shortened to "G" on the GP+IM machine under
construction.

As the reader will soon see, the array of integers
available to Read and Write is infinite in size.  This is not
possible in practice.  However, because any proof of Turing
completeness requires infinite memory, this is no limit on
the theoretical statement of the following proof.  In fact, this
infinite array can be simulated by a linked list of elements
that initially holds all the non-blank input and grows by one
element whenever a new memory element is referenced.  In
the construction below, one memory position may have to
hold an arbitrarily large integer.  This arbitrarily large
number can be simulated with a linked list in a similar way.

Before the construction and actual proof, it will help to
sketch what is going on.  We are going to make a GP+IM
function that will be the D G  for the machine we are
constructing.  The array of integers that this function has
access to, through indexed memory, will serve as the tape for
the machine we are constructing.  The current "state" of the



machine we are constructing will be stored in Memory[0].
The index of the array position that is the "current tape
position" will be kept in Memory[1].  In a sense Memory[1]
will track the "tape head" for us.  Every other element in the
array will effectively be a "tape element."  Since the memory
elements 0 and 1 are not part of the "tape" there is a little bit
of work done in the construction below (and in the sample
code) to make sure that when the "tape head" for the GP+IM
machine moves left or right, that Memory[1] skips from 2 to
-1 or from -1 to 2, respectively.  With the exception of DG,
the constructions below will be picking a subset of the
integers to stand for the different tape symbols and states that
the machine we are constructing can have.

The construction of QG
Suppose that the magnitude of QT  is Qmag.  We can

assign Qm a g  distinct integers to be the set QG . (e.g.
{101...Qmag + 100}  This set will be the set of allowable
states for the GP+IM machine.

The construction of qG
The members of QT  can be put into a one-to-one relation

with the integers in the set QG.  There is a unique member
of  QT   that is the start state for the target machine.  Using
the one-to-one relation,  qG is chosen to be the integer from
QG that corresponds to the element of QT  that is qT .   This
integer will be the start state for the GP+IM machine.

The construction of FG
Using the same one-to-one relation, the subset of

integers from QG that correspond to the subset of QT  which
is FT will be chosen as the set FG.  These integers will be the
final states of the GP+IM machine.

The construction of GG
Suppose the size of GT  is Gmag.  Gmag distinct integers

(none of which are in QG) can be chosen to stand for the tape
symbols. (e.g. the set {Qmag  + 101 ... Qmag+100+Gmag} )
The integers in GG will be the legal tape symbols for the
GP+IM machine.

The construction of BG
A one-to-one relation can be established between the

elements of GT  and the integers of GG.  BG will be chosen to
be the integer in GG that corresponds to the BT  that is a
member of GT . This new integer will be the blank symbol
for the GP+IM machine.

The construction of SG
Using this same relation between GT  and GG, the subset

of integers from GG that correspond to the subset of GT

which is ST  will be chosen as the set SG.  SG will be the
legal input tape symbols for the GP+IM machine.

The construction of DG
DT is a transition function, so it can always be organized

as follows:

State#   TapeSymbol      NewState#  Write          Move
s1 t1 ===> s1 t0   LEFT
s1 t0 ===> s1 t0 RIGHT
s2 t1 ===> s1 t0   LEFT
s2 B ===> s2 t1 RIGHT
s3 t1 ===> s3 t0 RIGHT
s3 t0 ===> s1 t0   LEFT

  (and so on ...)

This list can have at most |QT  x GT | lines in it.  Since QT
and GT  are finite by definition, this list will always be finite
in length.  For example, suppose QG becomes the set {101,
102, 103 ...199} and GG becomes the set {200, 201, 202,
...299} (where BG = 299).  Then the above list representing
an example DT  can be rewritten for DG as:

(IF (AND (= (Read 0) 101)
              (= (Read (Read 1)) 201))
 THEN
      (AND (Write 101 0)
               (AND (Write 200 (Read 1))

                  (IF (= (Read 1) 2)
                 THEN (Write -1 1)
                 ELSE (Write (Sub (Read 1) 1) 1))))
 ELSE
      (IF (AND (= (Read 0) 101)
                    (= (Read (Read 1)) 200))
  THEN
           (AND (Write 101 0)

        (AND (Write 200 (Read 1))
                 (IF (= (Read 1) -1)
                  THEN (Write 2 1)
                  ELSE  (Write (Add (Read 1) 1) 1))))

 ELSE
          (and so on ...)

In general, if there are k cases in the list for the DT  then k
nested IF-THEN-ELSE's can be constructed that perform the
same actions on the GP+IM machine that the DT  function
performs on the target machine.  The ith transition in DT can
be written as <x,y> ==> <z,u,v>, where x and z are members
of QT , y and u are members of GT , and v is member  of
{Left, Right}.  After the constructions described above, x,y,z,
and u all have integer representations for each transition in
DT.  So the ith IF-THEN-ELSE in the constructed nesting for
DG, corresponding to the ith transition of DT, will be like
figure 1 if the tape head moves left in the target machine and
like figure 2 if the tape head moves right in the target
machine.   Some of the code in figures 1 and 2 is used to
force Memory[1] to decrement from 2 to -1 and increment
from -1 to 2, in order to skip over the two non-tape
elements: Memory[0] and Memory[1].

After the k nested IF-THEN-ELSE's there is a last ELSE
that must contain something.  The GP+IM function will
only reach that point when none of the k  transition
preconditions are satisfied.  This is exactly the case in which
the TM halts.  So for the construction of DG the action of
this last ELSE should be to halt the GP+IM machine.  This
can be done as shown in figure 3.  Remember that the
GP+IM machine is a Repeat-Until loop that has as its
termination condition (the Until clause) some particular state



of the memory.  It is this condition that this last ELSE will
satisfy and that is why the GP+IM machine will halt.

(IF (AND (= (Read 0) x)
  (= (Read (Read 1)) y))

 THEN
      (AND (Write z 0)
               (AND (Write u (Read 1))

(IF  (= (Read 1) 2)
                 THEN (Write -1 1)
                 ELSE (Write (Sub (Read 1) 1) 1))))
 ELSE .....
Figure 1.

(IF (AND (= (Read 0) x)
              (= (Read (Read 1)) y))
 THEN
      (AND (Write z 0)
               (AND (Write u (Read 1))

                  (IF  (= (Read 1) -1)
                 THEN (Write 2 1)
                 ELSE (Write (Add (Read 1) 1) 1))))
 ELSE .....
Figure 2.

(ELSE (Write 1 1))))
Figure 3.

In figure 3 the tape head is set to point to itself.  This is
a head position that will never happen during the
computation so this state (Memory[1] == 1) will be the test
for completion of the Repeat-Until loop for this GP+IM
machine.  (i.e. Repeat <some GP+IM function> Until
Memory[1] ==1 )

The terminal set (legal list of constants and variables) for
this proof is the set of constants which are the integers in the
union of the sets QG, GG, and {-1,0,1,2}.

A GP+IM function has been constructed which is the
nested IF-THEN-ELSE's just described.  The GP+IM
machine will start with the integer qG in Memory[0] and
Memory[1] holding the index of the correct initial position in
the array for the machine's "tape head" (discussed below).

A TM can be said to accept its input if it halts in one of
the final states.  This means that the target machine we are
trying to duplicate accepts its input when and only when it is
started on that input and halts after a finite number of
transitions in one of the states FT.  For the machine we are
constructing, it accepts its input when and only when it is
started on that input and halts after a finite number of
transitions with the value in Memory[0] being a member of
the set of integers FG.

Equivalence Claim

For any input placed in the GP+IM memory array in the
manner prescribed below, the GP+IM machine will accept
the input when and only when the target machine accepts
the isomorphic input on its tape.

The word isomorphic will appear quite often during the next
two pages.  There are three similarities going on in this
construction and proof.  The first is the similarity between

the states of the target machine and the states of the machine
we are constructing.  These two sets are not identical, but
there is an obvious one-to-one mapping between them. The
second is a similar relation between the tape symbols for the
target machine and the tape symbols for the machine we are
constructing.  The third is the behavioral similarity between
what DT does for the target machine and what DG does for the
machine we are constructing.  So the term isomorphic here
will be understood to mean equivalence under each of these
mappings.

If the initial tape for the TM is

 
-    -    A   B  A  B  A   A   A  -   -

then memory must be set so that ...

999   999  101  100  101  100  101  101  101  999  999

.... i-4   i-3   i-2   i-1    i    i+1  i+2  i+3  i+4  i+5  i+6 ....  

... Memory[1] is set to i.  This sets the initial "tape head" for
the GP+IM machine to be the same as the target machine
with equivalent tape (memory) to either side of the starting
head position. (under the isomorphism that A==> 101,
B==>100, Blank==>999)  Though this proof avoids
discussions of practicality, it is worth noting that the infinite
storage needed for the infinite Blanks can be avoided by
noticing that, by default, every new memory element never
accessed before must contain a Blank (use some kludge for
the initial input).

To prove this Equivalence Claim I need to show that
the GP+IM function sets Memory[1] to 1 if and only if the
DT of the target Turing Machine we are duplicating has no
legal transitions(i.e. halts) and that the GP+IM machine will
be in a final state when and only when the target Turing
machine is in a final state.  In showing that both machines
will always be in the same situation from (Q x G), we will
have shown that, in particular, either both machines are in a
final state, or neither are.  To make the language of the proof
simpler, we will assume that the two machines are being run
synchronously.  That is, they each make one transition at the
beginning of each new unit of time.  After i units of time,
both machines will have made exactly i transitions (unless
either has already halted).

Inductive proof that all transitions preserve the
isomorphic equality of the two machines.

Base Case: Initially the target machine and the GP+IM
machine and their tapes are in the isomorphic states by
construction.

Inductive Hypothesis: Suppose that during the last n
units of time, each machine has made exactly n transitions
and that their states and their tapes are still isomorphically
equivalent.

Proof that the n+1 transition leaves both machines in
isomorphically equivalent states:



1] Suppose that ith transition of the finite number of
transitions in the list DT will be the appropriate transition for
the target machine at the beginning of time unit n+1 and
that this transition is <x,y> ==> <z,u,v> where x and z are
members of QT , y and u are members of GT , and v is
member of {Left, Right}.

2] Since there is one IF-THEN-ELSE in DG for each
transition in DT  (by construction) and since the IF-THEN-
ELSE tests are mutually exclusive (we will assume
deterministic Turing machines without loss of generality),
the IF-THEN-ELSE whose test succeeds will be an
instantiation of figure 1 or figure 2 (depending on the
whether the transition dictated by that situation moves the
head left or right).

3] The concept of "adjacentness" on the target machine tape
becomes, in this construction isomorphism, the same linear
ordering except that -1 and 2 are "next to" each other and 0
and 1 are excluded (by construction).

4] (AND (= (Read 0) x) (= (Read (Read 1)) y)) is true when
and only when <x,y> is the current situation. (by
construction and definition of AND and READ)

5] (Write z 0) puts the integer z (which stands for the
corresponding state by construction) into memory position 0,
which is where the state number is kept.  This effectively
changes the GP+IM state to be z.

6] (Write u (Read 1)) puts the integer u (which stands for
the corresponding new tape symbol) into memory position
(Read 1).  (Read 1) is the index of the memory element of the
current tape symbol (by construction), so this puts the new
tape symbol u into the current tape position.

7] (IF (= (Read 1) 2)
     THEN (Write -1 1)
     ELSE (Write (Sub (Read 1) 1) 1))))

This subtracts 1 from (Read 1) unless (Read 1) == 2, in
which case it moves the tape to -1.  This is exactly
isomorphic to moving the tape head left one space (by
construction and #3).

8] (IF (= (Read 1) -1)
  THEN (Write 2 1)
    ELSE (Write (Add (Read 1) 1) 1))))

This adds 1 to (Read 1) unless (Read 1) == -1, in which case
it moves the tape to 2.  This is exactly isomorphic to
moving the tape head right one space (by construction and
#3).

9] The meaning of <x,y> ==> <z,u,v> is that when we are
in state x and y is the current tape symbol, we should move
to state z, write u on the tape, and do v {Left, Right}   From
#2, #4,#5,#6,#7,#8 this is done by the GP+IM function
(DG).

Therefore all  transitions preserve isomorphic
equivalence between the two machines.

Proof that both machines halt on the s a m e
transition.

10]  At the end of each transition the two machines are in
isomorphically equivalent states from (Q x G) (proved
above).

11]   (Write 1 1)   This sets Memory[1] to be 1, which is the
condition for halting for the GP+IM machine (by definition
of Write and by construction).

12]  Memory[1] does not start equal to 1 (by construction)
and could only be changed to 1 by a Write (definition of
indexed memory).

13]  In all k IF-THEN-ELSE transitions, Memory[1] is only
incremented, decremented, set to -1, and set to 2 (by
construction).

14]  Increment and decrement never leave Memory[1] equal to
1 (From #7 and #8).

15]  There is a (Write 1 1) in the last ELSE and nowhere else
(by construction).

16]  The last ELSE is executed when and only when there are
no legal transitions in the target machine (by construction
and #2,#4).

17]  The target machine halts when and only when it has no
legal transition to do  (definition of Turing machines).

18]  Memory[1] = 1 (i.e. GP+IM machine halts) when and
only when the target machine halts (from #10 through #17).

Therefore on any input, the two machines will
halt after the same number of transitions.

Proof that the GP+IM machine accepts an input
when and only when the target Turing m a c h i n e
accepts that input.

After every transition, the two machines are in equivalent
states from (Q x G) (proved above).

The target machine halts after the exact same number of
transitions as does the GP+IM machine  (proved above).

Therefore if the machines have halted, they will be in
isomorphically equivalent states from (Q x G).  In particular
the target machine will be in state QT,i and the GP+IM
machine will be in state QG,j  (i.e. Memory[0] = QG,j )  and
QT,i will be the pair to QG,j in the one-to-one mapping used
in the construction of the GP+IM machine.

Therefore QT,i  is a final state if and only if QG,j is a final
state.

Therefore the target machine accepts an input
when and only when the GP+IM machine accepts
the isomorphically equivalent input.



This proves the Equivalence Claim.

It has just been shown that given an arbitrary TM, we can
construct an algorithm in the GP+IM paradigm that will,
given the same input and initial tape head position, act
exactly as the TM acts.  That is one definition of Turing
completeness.  Therefore the language of genetic
programming when combined with indexed memory is a
Turing complete language.

VI. Discussion

The non-terminal set used in the proof is overly simple.  The
DG function in the proof is orderly in a way that we know
will, in practice, never occur in a randomly generated or
evolved function.  This does not mean that in order to insure
Turing completeness in an experiment one has to use these
exact non-terminals, hold one's breath, and hope for nested
IF-THEN-ELSE's.  As long as the non-terminal set could
be used to construct a DG function like the one shown above,
the system under evolution is Turing complete.  That is,
every member of the population is a TM and there is no TM
outside the language of the population individuals.  Repeat
(ADD 1 (Read 61)) Until Memory[15]=0 is a TM,
but not the most interesting of Turing machines, since it
either halts immediately or runs on forever.  But most Turing
machines are like that.  This notion is similar to saying that
Shakespeare is expressible in some language X.  That may
be good to know, but that doesn't guaranty that any particular
line from language X will be quality literature.  Similarly,
the language of a typewriter is expressive enough to capture
Shakespeare.  However, Shakespearean prose will, in
practice, never arise from a monkey playing with the keys.
Whether evolutionary computation will suffer from this
phenomenon in the pursuit of evolving algorithms is still an
open question.

When the time comes to evolve a population of GP+IM
machines, a difficulty will arise.  Each member of the
population will be of the form Repeat Evaluate
<GP+IM function> Until <Some Test>.  To test
the fitness of an individual will involve initializing its
memory to something and then looping until the test is true.
The fitness of the individual might be determined by
examining its memory or through the result of some side-
effecting terminals done before the test becomes true.  The
difficulty is that for most tests there is a danger that the test
will never be true;  some machines will run on forever.
Worse, the Halting problem tells us that we cannot always
be sure whether the program under examination will ever
halt.  Does this mean that we cannot really evolve GP+IM
machines in practice ? The short answer is that know no one
really knows yet. [Teller, to appear]

What this proof shows is that any TM can be reproduced
in the GP+IM scheme.  When you try to evolve them you
may have to abort a test machine if it runs for a long time
without terminating.  This makes it hard or impossible to
evolve some TMs.  However, in practice the computers we
all work on are not Turing complete, because they do not
have infinite memory.  Still, we find them to be a good
approximation to a TM and even feel comfortable saying that
they are capable of universal computation.  In the same way,

aborting a GP+IM machine that has run for a long time cuts
off part of the search space but does not, in practice, remove
the universality of GP+IM's expressiveness.

VII. Conclusions and Future Work

This paper has proven that the combination of GP and
indexed memory is a system with a sufficient complexity to
support any computation.  This was shown by hypothesizing
an arbitrary Turing machine and constructing a machine of
the form:

Repeat
Evaluate < GP+IM function >

Unti l
< Some specific state of the memory >

and then proving that this machine had behavior equivalent to
that of the target Turing machine.

The discussion stressed that the highly improbable
nature of the GP+IM function under consideration was to
keep the proof simple.  The Turing completeness of the
system does not depend on a convenient organization of the
function.  Rather, it is a property of the language in which
that function is written.  Similarly, an extension or change
of the non-terminals or terminals used in the proof will
maintain the Turing completeness of the system, as long as
there is still a way to build each case of DT into the GP+IM
function.

This paper went to some length to emphasize the
theoretical nature of this work.  The fundamental
completeness of the GP+IM system will be reassuring to
some, but this proof is no substitute for a thorough
investigation into how to make this possibility a practical
reality.

Acknowledgments

The list of people who patiently listened to me rant and rave
about this proof is too long to include here.  However,  Eric
Siegel, Paul Teller, and Zander Teller deserve special mention
for their help in making this paper readable.

Bibliography

Hopcroft, John et al.  Introduction to Automata
Theory, Languages, and Computation.  Addison-
Wesley Publishing Co.   1979

Koza, John R.  Genetic Programming: On the
Programming of computers by means of natural
selection.  The MIT Press. 1992.

Teller, Astro  "The Evolution of Mental Models"  Chapter 9.
Advances in Genetic Programming.  editor Kinnear,
Kim.  MIT Press.  1993

Teller, Astro  "Genetic Programming, Indexed Memory, the
Halting Problem, and Other Curiosities"  Currently
unpublished manuscript.  Available on request.




