
A Study in Program Response and the Negative Effects of Introns in
Genetic Programming

David Andre Astro Teller
andre@flamingo.stanford.edu astro@cs.cmu.edu

(415) 941-9137 (412) 268-7123
Visiting Scholar - Dept. of CS Dept. of Computer Science

Stanford University Carnegie Mellon University
860 Live Oak, #4 Menlo Park, CA 94025 Pittsburgh, PA 15213-3890

ABSTRACT

The standard method of obtaining a
response in tree-based genetic program-
ming is to take the value returned by the
root node. In non-tree representations,
alternate methods have been explored.
One alternative is to treat a specific lo-
cation in indexed memory as the re-
sponse value when the program termi-
nates. The purpose of this paper is to ex-
plore the applicability of this technique
to tree-structured programs and to ex-
plore the intron effects that these studies
bring to light. This paper’s experimen-
tal results support the finding that this
memory-based program response tech-
nique is an improvement for some, but
not all, problems. In addition, this pa-
per’s experimental results support the
finding that, contrary to past research
and speculation, the addition or even
facilitation of introns can seriously de-
grade the search performance of genetic
programming.

1 Introduction

The traditional method for extracting the response from each
individual in GP was inspired by the functional program-
ming of LISP. The most common way to get a program’s
response is to take the value returned by the root node. The
tree whose value is taken to be the answer, especially when
an individual consists of multiple trees (such as automati-
cally defined functions (ADFs)), is usually called the Result
Producing Branch (RPB). We label this traditional method

Result Producing Branch Response, or RPBR. While using
the return value of the RPB is the simplest thing to do, it
gives exponentially decreasing importance to nodes further
down the tree. In other words, nodes lower in the tree have
exponentially less of an effect on the outcome in RPBR. We
conjecture that this situation can increase the complexity of
the search.

The genesis of this paper was the idea of a Memory-
Based Program Response (MBPR) paradigm. This idea
has already been suggested and found to be successful in
non-tree representations (e.g., [Teller and Veloso, 1995a,
Teller and Veloso, 1995b]). The hypothesis that this pa-
per addresses is that the advantages of MBPR outweigh its
disadvantages for many problems. This paper includes a
description of the MBPR mechanism, presentation of exper-
iments designed to test the hypothesis, and analysis of those
experimental results.

Section 2 describes an alternative to RPBR. Section 3
presents a set of runs on a classic GP benchmark on which
MBPR does well. Then sections 4 and 5 present two other
benchmark domains for which the MBPR costs are negligible
and high, respectively. The following two sections (6 and 7)
describe the important effects of introns in these reported
results and comment on the implications. Finally, section 8
concludes with a summary and future research directions.

2 Introduction to the Memory Based
Programming Response Method

The idea of MBPR is that one or more memory elements be
considered to be the “Answer Location” in memory. After
the program tree has been evaluated the value of this memory
location or locations is taken to be the program’s response.
For this paper we will take indexed memory [Teller, 1994]
as our memory model and use cell 0 of memory to be the

answer location. Thus, in this version of MBPR, the tree is
executed and then Memory[0] is taken to be the program’s
response.

2.1 MBPR: Non Tree Representations
Teller and Veloso have previously reported success using
the MBPR paradigm in GP with representations that are not
tree-structured [Teller and Veloso, 1995a, Teller and Veloso,
1995b]. While this past research is a good justification for
careful investigations into the actual effectiveness of MBPR
in alternate program representations, we will mention here a
few persuasive reasons for the use of MBPR in non-standard
program response situations.

The first non-standard response situation that is becoming
increasingly common in the GP field is to have a single
program return more than one value. Having separate trees
that evolve together is one solution to this problem, but this
is really a group of programs that share a fitness measure,
not a single program with multiple outputs (e.g., [Langdon,
1995]). A simple way to achieve this effect is to use MBPR
and use multiple memory locations for the multiple return
values. For example, if we want our programs to return
three values, we can treat Memory[0], Memory[1], and
Memory[2] as these three values upon program completion.

A second non-standard response situation is one in which
the programs must report a value periodically while running
continuously or in which the programs may run for a long
or infinite amount of time while the answer is required after
a fixed or at least limited amount of time. In such cases,
there is no way to force the programs to output a value from
some special function node (e.g., the root node of a tree)
when desired. If the MBPR paradigm is used, the value of
Memory[0], for example, can be polled as needed without
interruption of the program or concern for its state.

A third circumstance is one in which the representation
itself is not isomorphic to a tree-structured representation.
In such cases, as long as memory is being used, the MBPR
paradigm is trivial to implement. Conversely, if an RPBR
strategy is to be used, then you have to pick a special unit of
the program to treat as the answer and have some reassurance
that that unit will be activated within the time constraints of
the problem. In the MBPR method, the program becomes
responsible, not for returning a best value, but for updating
its memory with its best guess.

The three reasons just outlined, and others, clearly show
MBPR to be more flexible than RPBR. Thus, only a high
computational overhead should prevent the use of the MBPR
paradigm.

2.2 MBPR: Tree Representations
The following two definitions will be useful in discussing the
relative merits of the RPBR and MBPR paradigms.

Vertical Node Interference is the blocking of a subtree re-
sult by one of its ancestors. This phenomena is ag-
gravated by representations in which there is an non-
uniform distribution of control among the nodes. The
tree representation is such a representation. The tree
representation provides an inverse exponential distribu-
tion of control among the nodes as a function of depth.
The root controls the return value of all

�
nodes. If

the root has arity A then each of its children has, on
average, control over

�����
nodes.

Sibling Coordination Interference is the blocking of a
subtree’s result by a node that is not an ancestor. This
is the search difficulty brought about by representations
in which nodes that are not hierarchically related (e.g.,
ancestor-descendant relation) to each other can still af-
fect each other’s results through side-effects. The ant
problem representation in [Koza, 1992] suffers from
this. In fact, any representation that includes memory
usage (e.g., indexed memory) potentially suffers from
this effect.

The argument for MBPR in the tree-structured GP repre-
sentation follows. If a program has some portion of it that
computes an accurate or perfect answer, it must (independent
of the representation and response collection method) rely on
the rest of the program not to interfere with that answer until
the environment collects it. For example, in tree-GP using
RPBR, if a subtree computes a good answer, it must depend
on the path from the root of that subtree to the root of the tree
to be non-destructive. This is the vertical node interference
problem mentioned in the previous section.

Clearly, MBPR suffers from an analogous problem. If a
program is allowed to update its “answer” memory cell in
any part of its program, then clearly a “destructive” program
fragment can overwrite a correct answer that the “good” part
of the program had already written to the “answer” location
in memory. This is the sibling coordination interference
problem.

Because the MBPR approach is largely (although not en-
tirely) position independent, it seems to have a natural ad-
vantage over RPBR. A response collection policy is position
independent to the extent that a subtree that computes “the
answer” for a given individual can be moved without affect-
ing the subtree’s ability to produce “the answer” in the new
individual. In the MBPR paradigm, a subtree that includes a
WRITE to the answer cell in memory can be moved to a new
individual program and that subtree will still be able to store
its value into the answer cell in memory. Obviously, the high
degree of vertical node interference means no such guaran-
tee can be made when RPBR is used. MBPR is not entirely
position independent in the sense that while a transplanted
subtree can compute an answer and store it in Memory[0],
that value could later be overwritten by another subtree.

To believe that the MBPR paradigm will be better than
RPBR paradigm for a particular problem, we must believe
that searching with high sibling coordination interference
will be easier than searching with high vertical node inter-
ference. It would seem that the a priori argument for MBPR
is that, in the worst case, any tree that is a solution in RPBR
space, by adding a WRITE to the top, becomes a solution
in the MBPR space. Even if there are other WRITEs to the
answer location in the tree, this root node, since it is last, can-
not be overwritten. It seems that this “capping” procedure
would be simple to evolve if it were necessary. However,
the side-effects of introns introduced by memory (sibling
coordination interference) complicates this analysis.

All these reasons contribute to our belief that MBPR is a
more flexible strategy for program response collection. Now,
experiments will help us to understand when, if ever, the costs
associated with MBPR outweigh the arguments for using it.

3 Positive Results with MBPR

All of the experiments in this paper refer to four different
experimental conditions that were run together for compar-
isons. Below is a list of the four types of experiments as they
are annotated in the tables and an explanation of what they
mean.�

ProblemType-RPBR indicates that the problem was run
with the usual function set and the result was taken from
the return value of the root node of the tree.�
ProblemType-RPBR-X � ���

indicates that the problem
was run with the usual function set plus a perversion
of the indexed memory functions in which (READ)
and (WRITE
�) both return their last argument ().�

indicates the number of indexed memory cells (see
below for the effect

��
2 on these run types). In this

case the result is still taken from the return value of the
root node of the tree.�
ProblemType-RPBR-M � ���

indicates that the problem
was run with the usual function set plus the standard in-
dexed memory functions (READ index) and (WRITE
index new-value) with

�
possible indexed memory

cells. In this case the result is still taken from the return
value of the root node of the tree.�
ProblemType-MBPR � ���

indicates that the problem
was run with the usual function set plus the indexed
memory functions (READ index) and (WRITE index
new-value) and

�
cells. In this case the result is not

taken from the return value of the root node of the tree.
Instead, after the tree is evaluated, the current value of
Memory[0] is taken to be the program’s result.

When
���

1, no indexing is necessary, and READ be-
comes a terminal and WRITE becomes a single arity func-
tion. When

���
0, READ is no longer included in the

function set. Single arity WRITE is left in the function set

to save values, but they can not be referenced later by the
program. The ProblemType-RPBR-M runs were only per-
formed when

���
0, because when

���
0, the memory

functions have no effect on the output in RPBR case, and
are therefore equivalent to their inert counterparts used in the
ProblemType-RPBR-X runs.

Table 1: The 5-Parity problem

Basic 5-Parity Function Set

functions and or nand nor
Terminals d0 d1 d2 d3 d4

5-Parity Problem Parameters
Max Generations = 75
Max Tree Size = 500

Pop Size = 32,000

5-Parity Problem Results

Problem Type Comp. Effort #Solved #Run
5Parity-RPBR 3,435,185 26 27
5Parity-RPBR-X (2) 17,820,172 12 27
5Parity-RPBR-M (2) 1,640,000 26 26
5Parity-MBPR (2) 1,189,000 26 26

All the results presented in this paper had several method-
ological points in common. Where the methodologies dif-
fered, the differences will be mentioned when the data is
presented. For all of the experiments, we used tournament
selection with sample size of 8. Unless otherwise noted,
the maximum number of generations was 101. All the runs
discussed in this paper with a maximum node limit of 2000
or above had an initial maximum depth of 10. In addition,
the runs with the Gudermannian1 function on the

���
0

case with a maximum node limit of 1000 also used an initial
maximum depth of 10. All other runs used had an initial
maximum depth of 8. The recombination percentages for all
experiments were: 10% copy, 1% mutation, 89% crossover
(10% leaves, 79% internal nodes).

The first problem on which we tested the MBPR paradigm
was the 5-Parity problem. There were two motivations for
choosing this problem. The first was that, as the most classic
GP benchmark, it is one that most readers are familiar with.
The second reason for choosing a parity problem was the
desire for a simple, but not trivial, problem where a subtree
has often been observed to express a correct calculation.

This problem was run on a medium-grained parallel
Parsytec computer system consisting of 64 80 MHz Power

1This paper’s regression problem is called the “inverse Guderman-
nian”, referred to here simply as the “Gudermannian”. The function is
(��������� 1 � �!�#"#�%$'&(&*),+�- ./�0$'&�&).

PC 601 processors arranged in a toroidal mesh with a host
PC Pentium type computer. The so-called distributed genetic
algorithm for parallelization was used with a population size
of Q = 500 at each of the D = 64 demes. On each generation,
four boatloads of emigrants, each consisting of B = 5% (the
migration rate) of the node’s subpopulation (fitness-based
selection) were dispatched to the four toroidally adjacent
processing nodes [Andre and Koza, 1996]. This hardware
was only used on the Boolean runs. All other runs were
performed on a Pentium.

The results on the 5-parity problem are presented in ta-
ble 1. Not only does the MBPR take 33% of the computa-
tional effort of RPBR on the 5-parity problem, but the MBPR
style of response actually solves 100% of the time instead of
the 96% shown here for RPBR. This large improvement for
MBPR may be due to either one or both of the differences
between MBPR and RPBR: the addition of memory or the
memory based response. In the case where memory is added
(5-parity-RPBR-M), 100% of the runs found a perfect solu-
tion, and it requires only 48% of the computational effort of
the 5-parity RPBR. Taking the answer from memory helps,
but just adding memory accounts for more than half of the
difference in computational expense.

Clearly, the most dramatic aspect of the data in table 1 is
the large amount of computational effort and the low number
of solved runs for the 5-Parity-RPBR-X problem. When the
inert READ and WRITE operators are added, computational
effort increases by a factor of five and solutions occur less
than half the time. This is surprising. Why would adding
READ and WRITE functions that just passed back their last
argument cause such a problem? This question will be ad-
dressed in sections 6 and 7. The results from the parity
problem indicate that the MBPR approach works well on the
most classic GP benchmark.

4 Minimal Cost Results with MBPR

The next benchmark problem we chose for further validation
of the MBPR results shown in the previous section was the
lawn-mower problem. The lawn-mower problem was cho-
sen for two important reasons. The first is that, as will be
described, this version of the lawn-mower problem requires
the use of memory. This required use of memory makes it
possible to at least partly separate the MBPR paradigm from
the general helpfulness of memory (table 1). The second
reason was to pick a problem with more complexity than the
5-Parity problem and with a much richer function set.

A version of the lawn-mower problem is described
in [Koza, 1992]. The basic concept is that there is a lawn-
mower in an 8x8 toroidal grid world. In our version of the
problem, the mower only moves once per execution of the

2(INCM(X) adds 1 to Memory[X] and then returns new value of
Memory[X])

Table 2: The Lawn-mower Problem

Basic Lawn-mower Function Set

functions or and if
�

0 not if
�

0
pdiv add sub mult write
read incm2 dprog2

Terminals move left -10...10

Lawn-mower Problem Parameters
Max Generations = 101

Max Tree Size = 500
Pop Size = 2,000

Lawn-mower Problem Results

Section 1: 20 Indexed Memory Cells
Problem Type Comp. Effort #Solved #Run
Lawn-RPBR-M (20) 15,099 143 143
Lawn-MBPR (20) 24,372 136 136

Section 2: 20 IM Cells and 1 dedicated answer cell
Problem Type Comp. Effort #Solved #Run
Lawn-MBPR (20/1) 15,516 209 209

tree, and is allowed 200 time steps. If the value returned
is less than zero, then the mower turns left. If the value is
greater than zero, then it moves forward and mows. If the
return value is zero, it does nothing. The lawn-mower’s goal
is to mow as much of the world as possible during those 200
time steps. Since it receives no sensory input, it must rely on
its memory to help it create a path that hits most or all of the
grid positions. This description (and the function set shown
in table 2) should make it clear that this problem only shares
surface level details with the lawn-mower problem in [Koza,
1992]. The main differences are: no state except indexed
memory (i.e., no progn), one move at a time (i.e. one move
per tree evaluation), and no jumping allowed.

The lawn-mower problem (results for which are shown in
table 2:1) was set up so that memory was required3. We see
that the MBPR takes 1.62 times as much computational effort
as RPBR. This is surprising given that the programs are using
their memory anyway. One potential explanation for this is
that because this is actually a memory critical problem, and
zero is a very likely value to occur4, different program pieces
may initially “fight” for control of memory cell 0: some to
store the answer, and others to keep track of the mowing
movements.

3Lawn-RPBR (no memory) and Lawn-RPBR-X (useless memory func-
tions) are not shown because memory is required for the problem.

4Zero is especially likely to occur with a function set such as this where
aspects of it, like boolean functions and the initally all zeroed valued mem-
ory, contribute to the likliness of zero as a value

The above hypothesis suggests the following experiment:
continue to use 20 indexed memory cells, but introduce one
new dedicated memory cell for the MBPR “answer.” To dedi-
cate this memory cell, a new function was introduced into the
function set: WRITE-ANSWER. WRITE-ANSWER takes
one parameter, the value, and stores that value in the dedi-
cated memory cell. The results of this experiment are shown
in table 2:2. The addition of this dedicated memory cell has
successfully reduced the computational cost of the MBPR
runs to almost exactly that of the RPBR runs. This change
in computational cost demonstrates that contention over the
“answer” position in indexed memory (memory cell 0) was
indeed the expensive aspect of the MBPR runs shown in table
2:1. In short, MBPR does not reduce computational effort in
this domain, but does not increase it either.

5 Negative Results with MBPR

Symbolic Regression was chosen for a third benchmark on
which to test the MBPR paradigm both because it is a tra-
ditional GP benchmark problem, and more importantly, be-
cause it has characteristics that suggest that MBPR will not
help. Table 3 shows the basic function set that all the regres-
sion problems discussed in this paper used (except where
explicitly noted).

The relative simplicity of the function set was an important
factor in the decision to choose regression as our third prob-
lem domain. The algebraic primitives do not lead directly
to intron activity (this is discussed more fully in the next
section) because 0 and 1 are not provided as terminals. In
addition, the algebraic primitives for regression tend to lead
to most or all of the tree being used. This set of functions
is relatively homogeneous. This homogeneity leads us to
suspect that MBPR will hamper rather than help the search
process.

Table 3:1 presents the results of the first set of regression
runs with the Gudermannian function and 20 indexed mem-
ory units. Not only does the MBPR paradigm not help, it is
extremely detrimental to performance. In fourteen runs, it
never finds a solution. While this is in the direction that was
predicted, it is so negative that it is puzzling. Again, we see
that adding useless READ and WRITE functions (the Reg-
RPBR-X runs) causes a factor of five rise in computational
cost and a 28% reduction in number of solutions. It is at this
point that we may begin to suspect that the MBPR effects are
being swamped by some other effect.

In an effort to find the cause of the performance drop,
several experiments were run in which the memory size was
reduced. The rationale is that, since the the MBPR paradigm
did well on the 5-Parity and had only two memory cells
whereas the MBPR method did less well on the lawn-mower
problem where there were 20 memory cells, perhaps reducing
the indexed memory size will, for this problem, lower the cost

Table 3: Regression

Basic Regression Function Set

functions Add Sub Mult Div
Terminals 1 Random Ephemeral Constants

Regression Problem Parameters
Function = (2(3�45�6� 1 ��7 398:�;1 �<�>=@?BADC �E1 �<�

).
Max Tree Size = 1000

Regression Problem Results

Section 1: 20 Indexed Memory Cells
Problem Type Comp. Effort # Solved # Run
Reg-RPBR 35558 28 29
Reg-RPBR-X (20) 183380 19 28
Reg-RPBR-M (20) 129946 10 15
Reg-MBPR (20) NA 0 14

Section 2: 2 Indexed Memory Cells
Problem Type Comp. Effort # Solved # Run
Reg-RPBR 35558 28 29
Reg-RPBR-X (2) 183380 19 28
Reg-RPBR-M (2) 142710 6 16
Reg-MBPR (2) 1975913 1 17

Section 3: 1 Indexed Memory Cells
Problem Type Comp. Effort # Solved # Run
Reg-RPBR 22589 32 32
Reg-RPBR-X (1) 178732 22 31
Reg-RPBR-M (1) 114506 25 33
Reg-MBPR (1) 540994 12 32

Section 4: 0 Indexed Memory Cells
Problem Type Comp. Effort # Solved # Run
Reg-RPBR 34408 57 57
Reg-RPBR-X (0) 57550 112 114
Reg-MBPR (0) 212157 43 57

of using MBPR. Table 3:2-4 shows the results.
It has been repeatedly suggested, though never demon-

strated, that unnecessarily large indexed memory sizes can
degrade performance. Table 3:2-4 indicates that reducing
memory size does not seem to explain the poor performance
of the RPBR-X, RPBR-M, and MBPR runs.

The last set of runs in table 3:4 (0 cells for indexed mem-
ory) shows runs in which there is no indexed memory to
confuse the program while it is computing an answer. Since
(Write-Answer x) returns X, it basically has no effect except
to save off the answer. In this situation, any tree that has
WRITE-ANSWER as its root is exactly the same as a tree
using RPBR from the point of view of the return value. This
is true even if there are other WRITE-ANSWERs in the tree,
since the root is evaluated last. It is hard to believe that the

problem is eight times easier than “Solve the Gudermannian
with Add, Subtract, etc and put a WRITE-ANSWER at the
root node.”

The runs in table 3:4 have two main points of interest.
Notice that while the computational effort of the RPBR-X
runs is worse than that of RPBR runs, it is much closer
to that of the RPBR runs that to that of the MBPR runs.
The former ratio is 1.67; the later is 3.68. This means two
things. First, even inert WRITE-ANSWER alone (RPBR-X)
is enough to cause a performance degradation. Second, and
at least as importantly, MBPR is causing more of a problem
than the the intron effect caused by inert WRITE-ANSWER
in this case.

6 The Mystery Cause Unmasked
Introns are almost always possible. Whenever a subtree’s
return value is ignored, that subtree is an intron. There
are, however, ways of making introns easier to generate,
and therefore more prevalent in programs. For example, in
Regression-RPBR-X (20), (WRITE X Y) not only has no
effect on memory, but in simply returning Y, it makes the X
subtree an intron. The (READ X) function in the RPBR-X
(20) runs does not create an entire intron subtree, but merely
is an intron itself.

We see the following two ways in which introns can be
detrimental to the search process:

1. They can hamper search by providing locations where
crossover can happen and have no effect on behavior.

2. They can take up space in the tree and, if tree space is
limited, may cramp the actual space for solutions.

In the experiments reported in this section, we attempt to
differentiate between these two types of intron effects. Al-
lowing larger maximum tree sizes should only alleviate the
cramping effect of introns and not the search degradation
effect. These experiments directly compare the effects of in-
creasing maximum tree size on two different types of introns-
those created by WRITE-ANSWER in the RPBR-X (0) case,
and those created by sibling coordination interference in the
MBPR (0) case. We assume (though there is disagreement
about this) that the first of these two problems does occur;
in our opinion, a wasted search step can do nothing but slow
the search process.

The runs in table 4:1 show the results of the Gudermannian
problem runs, where the tree sizes are limited to 2000 nodes
per tree (as opposed to 1000 nodes per tree in table 3). Notice
that the computational effort of the RPBR and MBPR runs
in table 3:4 and table 4:1 increases, but their ratio does not
change significantly.

The ratio of the computational effort of the RPBR-X runs
to the computational effort of the RPBR runs drops from
1.67 to 1.46 when the maximum tree size is increased from

Table 4: Regression with increased tree size limits

Regression. (2(3�4F�<� 1 ��7 398:�;1 �6�G=H?BAIC �;1 �6�
).

Section 1: Max Tree Size (MTS): 2000
Problem Comp. Effort # Solved # Run
Reg-RPBR 32564 47 51
Reg-RPBR-X (0) 47520 101 103
Reg-MBPR (0) 230615 37 52

Section 2: Max Tree Size (MTS): 5000
Problem Comp. Effort # Solved # Run
Reg-RPBR 37525 43 43
Reg-RPBR-X (0) 53001 85 86
Reg-MBPR (0) 208426 30 43

Section 3: Max Tree Size (MTS): 10000
Problem Comp. Effort # Solved # Run
Reg-RPBR 44116 121 121
Reg-RPBR-X (0) 60064 239 243
Reg-MBPR (0) 304157 67 121

Section 4: Increasing MTS for Reg-RPBR-X (0)
MTS Comp. Effort solved/runs Ratio to RPBR
1000 57550 112/114 1.67
2000 47520 101/103 1.46
5000 53001 085/086 1.41

10000 60064 239/243 1.36

1000 to 2000. Since nothing but the maximum tree-size
has changed, and the control for the experiment (RPBR)
takes approximately the same amount of time, this means
that larger maximum tree sizes made it easier to solve the
problem. The RPBR-X runs shown in table 4 differ from the
RPBR runs only in that there is a single, useless function.
The inert WRITE-ANSWER, because it passes its argument
back up, does not even cause introns below it. This is very
significant. Adding a single function can cause a run to take
1.67 times as long to complete (table 4:4) and increasing
the maximum tree-size can reduce the penalty to 1.46 (2000
node limit). The question arises, “What is the floor for this
ratio?”

We see in table 4:2 that moving the maximum tree size
to 5000 again has little effect on the RPBR runs or on the
MBPR runs. The computational effort of the RPBR-X runs
drops to 1.41 times that of the RPBR runs. This confirms
our conclusion that the useless functions take up space and
force the useful program fragments into a smaller space. By
increasing the maximum tree size, this problem is greatly
reduced. In the runs with 10000 node maximum tree size,
the computational effort of the RPBR-X runs is 1.36 times
the computational effort of the RPBR runs. While this is only
slightly lower than the 1.41 just mentioned, it is close to the
theoretical penalty for adding one useless function (X+1/X

where X is the number of useful functions) which in this case
is 5

�
4 or 1.25. Table 4:4 summarizes this trend.

Comparing the computational effort of the RPBR and the
RPBR-X runs for the experiments shown in this section, we
see a gradual reduction of the difference between the two as
the maximum allowed tree sizes increases. In fact, it seems
asymptotic to the theoretical penalty for adding a useless
function to the function set.

The computational effort using the MBPR paradigm does
not improve noticeably as the maximum tree size increases
(table 3:4 and table 4). Thus, the negative effects caused
by using the MBPR paradigm are not the cramping effects.
This leaves only the “search degradation” intron effect as
the explanation for MBPR’s higher computational expense.
This corresponds with the picture we have painted of the
trade-offs between RPBR and MBPR. As the tree grows, the
relative importance of vertical node interference and sibling
coordination interference does not change.

7 Discussion

7.1 MBPR: Tree Representations

In the previous two sections, we showed three things about
the MBPR paradigm:�

For the boolean 5 parity problem, MBPR works well, but
much of its advantage was because of the introduction
of memory.�
For the iterative lawn-mower problem, a problem that
already required memory, MBPR was neutral with re-
spect to computational effort.�
For the regression problems, problems that by their na-
ture (homogeneity of function set) are unlikely to ben-
efit from memory, MBPR was very expensive. Even
when WRITE-ANSWER was used instead of indexed
memory, the computational effort increase was always
at least a factor of 2.

The explanation for MBPR’s performance on the 5-parity
problem is relatively simple. There is a large amount of re-
dundancy in the parity problems that can be exploited through
a technique like ADFs [Koza, 1992]. Since ADFs were not
used, the introduction of memory served the same purpose.
Values can be stored once in memory and then retrieved in
several different places.

The performance improvement observed when using
MBPR on the 5-parity problem provides evidence that the
vertical node interference is more harmful for the 5-parity
problem than is sibling coordination interference. Given that
the runs with indexed memory (RPBR-M) differ only from
the MBPR runs only in that the representation in the RPBR-M
runs allows more vertical node interference, the improvement
when using MBPR must be due to that difference.

Another way of understanding the success of MBPR on
the 5 parity problem is by investigating its function set. In
the 5-Parity problem, all four of the functions allow intron
subtrees to form if the other subtree always returns a one or a
zero. For example, if a subtree to an AND always returns a 0,
the result of the other subtree is ignored. Since the 5-Parity
is a boolean problem, constant values of 0 or 1 occur quite
often. In contrast, in the regression problem, only a return
value of 0 (out of infinitely many possible values) can cause
a TIMES to have an intron subtree. Because it is relatively
easy to make intron subtrees in the Boolean problem, ver-
tical node interference is much more of a problem than is
sibling coordination interference. This explains the success
of MBPR on this problem

In the lawn-mower problem, it seems to be that the vertical
node interference and the sibling coordination interference
are approximately equal; moving from RPBR to MBPR does
not make a significant difference. We suggest that this ap-
proximate equality of the two interference measures exists
because memory is already being used in the RPBR lawn-
mower problem. As shown in section 4, the moderate in-
crease in computational effort was caused by contention over
use of the Memory[0]when a dedicated memory cell is not
provided. The lawn-mower problem uses memory in a very
different way than does the 5-Parity boolean problem. The
lawn-mower must use memory to communicate with itself
on a later time step, whereas the 5-Parity problem only uses
memory to pass values around. Using memory simulates
ADFs for the 5-Parity problem, but not for the lawn-mower
problem. This point may help to explain some of the differ-
ence between MBPR’s effect on the 5-Parity and lawn-mower
problems. Memory[0] could be a point of contention in ei-
ther case (possibly more so in the 5-Parity problem when
there are only 2 cells). However, these different memory
requirements may change the dynamics of memory use in
ways that we do not yet fully understand.

Most of the results shown in section 5 used WRITE-
ANSWER instead of full indexed memory in a effort to dis-
entangle the issues. One of the aspects of this data that we can
not yet fully explain is why WRITE-ANSWER, even when it
is not used for MBPR, causes such a noticeable jump in com-
putational effort. Section 7.2 gives a plausible explanation
for the underlying cause.

7.2 Introns

It should be clear from the previous section that the MBPR
results were being confused by (arguably even obscured by)
another effect: introns. This paper has suggested that introns
can affect performance in a very negative way. The purpose
of this section is to summarize the experimental evidence for
introns and to present a partial explanation for their effects.
We should mention here that our definition of intron is a
behavioral definition. That is, we do not care where the

genotype/phenotype line is drawn; an uncalled subtree is
an intron, as is a subtree that is called and whose result is
ignored.

Before we explain our findings, however, we will summa-
rize what we believe to be the contemporary view of introns
in the GP field. Introns have recently been often described
as a beneficial aspect of the genetic search that serves at least
two important functions. The first “benefit” of introns is of-
ten stated to be their ability to protect the program of which
they are a part from “destructive” crossover. The second
“benefit” of introns is to allow the population as a whole to
protect and thereby preserve the best “building blocks” in
the population. Efforts to insert extra introns into the pop-
ulation as a search aid [Nordin and Banzhaf, 1995] indicate
the current favorable standing of introns in GP.

Many researchers (e.g., [Nordin and Banzhaf, 1995,
McPhee and Miller, 1995, Rosca and Ballard, 1995]) have ar-
gued that introns are helpful, in that they prevent destructive
crossover. However, their argument assumes that the best of
the current generation are in the right part of the search space
(i.e, that destructive crossover is necessarily bad). While
destructive crossover may be bad for natural evolution, the
goal of GP is often optimization of a single program, not the
survival of any particular individual of individuals.

There are at least three types of introns associated with
functions. There are also introns associated with useless
terminals, but since this paper had only one experiment with
a change in the terminal set ((READ) returning the value of
memory for

�J�
1), we will concentrate on the following

three function intron types:�
Local: Useless functions that simply pass on the values
they are passed.�
Hierarchical: functions that force one or more of their
subtree arguments to be ignored. WRITE in the RPBR-
X (

�K�
0) runs done in this paper is an example of this

intron type.�
Sibling (horizontal): functions that may cause the ef-
fects of a sibling subtree to become moot at a later point
in the program. An example of this intron type is when
a subtree has its contributions to memory overwritten
by a subtree that is executed later (as can happen in the
RPBR-M and MBPR runs in this paper).

Table 5 summarizes the effect that adding inert versions of
READ and WRITE has on the computational effort required
to solve various problems. In all of the runs in table 5, READ
is useless (because it simply passes its one argument up the
tree) (causing Local introns). WRITE actually creates an
intron by ignoring its first argument and passing its second
argument along (causing Hierarchical introns). Measured by
either computational effort or by the likelihood that a perfect
solution will be found in the required number of generations,
the addition of this useless function and this intron causing
function have a very strong negative impact on the search
process. Since these two functions are not actually acting as

memory conduits, the extra computational expense must be
caused by the intron effects.

Table 5: Result Comparisons

Run results: Inert Memory (RPBR-X) relative to RPBR
MTS is Max Tree Size.

Section 1: using READ and WRITE
MTS Problem Comp. Effort ∆ Solution Rate ∆
1000 5Parity (2) 5.18 2.27
1000 Reg (20) 5.23 1.43
1000 Reg (2) 5.23 1.43

Section 2: using READ and WRITE
MTS Problem Comp. Effort ∆ Solution Rate ∆
1000 Reg (1) 7.91 0.70

Section 3: using WRITE-ANSWER
MTS Problem Comp. Effort ∆ Solution Rate ∆
1000 Reg (0) 1.67 1.02
2000 Reg (0) 1.46 0.94
5000 Reg (0) 1.41 1.01
10000 Reg (0) 1.36 1.02

In table 5:2 we see that when READ becomes a 0 argument
function (i.e. a terminal) and WRITE becomes a single ar-
gument function (in the

�L�
1 case), and so both cause only

local introns, the performance degradation remains. How-
ever, when we remove READ entirely and are left with only
WRITE-ANSWER (causing only local introns) (

�L�
0) the

performance degradation is lessened, although still negative.
Further, with only WRITE-ANSWER we no longer have
a function that explicitly causes whole subtrees to become
introns; WRITE-ANSWER is itself simply an intron since
it does nothing useful. This suggests that the addition of
one useless function can have a detrimental effect on the GP
search process.

The zero arity READ (table 5:2) returns a zero since it has
no value to pass along. Since the presence of (READ) in Reg
(1) is the only thing that distinguished it from the Reg (0)
runs, the presence of zero as a terminal obviously has a large
negative effect. The reason for this can again be explained
by intron effects. With random ephemeral constants and X,
making an intron is possible using the algebraic primitives,
but not as easy as when 0 is also readily available. It is the
difference between the likelihood of (* Y 0) and (* Y (- Z
Z)). This may not seem like a large difference, but it has a
large effect in this case, as shown in the difference between
table 5:2 and the first line of table 5:3.

Table 5:3 shows the effect of the useless function (WRITE-
ANSWER) as the maximum size allowed for a tree is raised
from 1000 to 2000, 5000, and then 10000. In all three cases,
the expense of local introns has been reduced to a modest

cost. The conclusion is that for populations with sufficiently
large members, this particular intron effect (addition of in-
ert functions) ceases to be expensive. This says something
important about tree size. The prevailing wisdom seems to
be that as long as the tree size maximum is large enough
for a non-compacted solution to fit, the search will go fine.
Table 5:3 implies that the necessary tree size ceiling is also
a function of the ease with which the functions can form
introns.

It is important to notice that the conclusion of the previous
paragraph is made in the context of

�M�
0. By increasing

the maximum tree size, we alleviate this intron “cramping
effect”. In the case where

�N�
0 and/or MBPR is used, the

intron expense incurred from the search degradation effect
dominates (as entire subtrees can be intron-ized). In this,
the

�O�
0, case, increasing the maximum tree size limit has

little effect, as is shown in table 4. Now we have an answer to
the question “Why won’t the ‘capping procedure’ (proposed
in section 3) guarantee a minimal cost increase for MBPR?”
The answer is, the ’capping procedure’ presupposes a correct
solution to cap. The search degradation caused by introns
appears to seriously impede the evolution of such solutions.

8 Conclusions

The hypothesis of this paper is that the greater flexibility and
reduction of vertical node interference in MBPR outweighs
the possible negative effects of increased siblingcoordination
interference and the possible cost of introducing memory.

The experimental results presented show that the intron
effects from MBPR are too damaging for those problems
(e.g., regression) that are very homogeneous. This correlates
well with whether or not those problems benefit from the
introduction of memory; When introducing memory to a
problem does not help or even hurts, MBPR is unlikely to
provide a benefit since memory must be added for MBPR to
be accomplished.

When memory is necessary, the experimental results in-
dicated that, for the test problem, MBPR did not have a
dramatic performance impact. Given the negligible cost, the
flexibility and generality of MBPR certainly makes it worth
consideration for these problem types. However, if the prob-
lem is more "horizontal", the likelihood of introns is already
present, and vertical node interference is a frequent occur-
rence then (e.g., the Parity problem) MBPR is likely to give
a boost to the search process.

The take home messages are two fold. First, MBPR does
not seem to be a problem independent improvement for tree
representations, although it seems to be an advantage when
memory use is simple, helpful, or required. In addition, the
MBPR paradigm, as described in section 2.1, has several
other points in its favor. To verify these conclusions, for
both tree-GP and non-tree-GP representations, further exper-

iments should be done with more complex problems.
The second conclusion of this paper is that introns are

probably damaging. This goes against conventional wisdom,
but in the data presented in this paper, the control experiments
identify introneffects as the only possible cause of significant
performance degradation under a variety of conditions and
on a variety of problems. Results were presented that showed
this change, to varying degrees, with local, hierarchical, and
sibling introns.

The corollary to this conclusion is that simple changes in
the function set can have large effects on computational ef-
fort. In particular, the addition of one intron causing function
can make it difficult or impossible to solve what otherwise
would have been an easy problem in genetic programming.

Acknowledgements
This work is supported in part by the Hertz Foundation whom
Astro thanks for their kind support. The support and com-
ments of John Koza and Forrest Bennett are greatly appreci-
ated by both David and Astro.

References
[Andre and Koza, 1996] D. Andre and J. Koza. Parallel genetic program-

ming: A scalable implementation using the transputer architecture. In
P. Angeline and K. Kinnear, editors, Advances In Genetic Programming
II. MIT Press, 1996.

[Koza, 1992] John Koza. Genetic Programming. MIT Press, 1992.

[Langdon, 1995] William Langdon. Evolving data structures with genetic
programming. In Stephanie Forrest, editor, Proceedings of the Sixth
International Conference on Genetic Algorithms. Morgan Kauffman,
1995.

[McPhee and Miller, 1995] N. McPhee and J. Miller. Accurate replication
in genetic programming. In L. Eshelman, editor, Proceedings of the
Fifth International Conference on Genetic Algorithms, pages 303–309.
Morgan Kauffman, 1995.

[Nordin and Banzhaf, 1995] P. Nordin and W. Banzhaf. Complexity com-
pression and evolution. In L. Eshelman, editor, Proceedings of the Fifth
International Conference on Genetic Algorithms, pages 310–317. Mor-
gan Kauffman, 1995.

[Rosca and Ballard, 1995] J. Rosca and D. Ballard. Causality in genetic
programming. In L. Eshelman, editor, Proceedings of the Fifth Inter-
national Conference on Genetic Algorithms, pages 256–263. Morgan
Kauffman, 1995.

[Teller and Veloso, 1995a] Astro Teller and Manuela Veloso. PADO: A
new learning architecture for object recognition. In Katsushi Ikeuchi
and Manuela Veloso, editors, Symbolic Visual Learning, pages 81–116.
Oxford University Press, 1995.

[Teller and Veloso, 1995b] Astro Teller andManuela Veloso. Program evo-
lution for data mining. In Sushil Louis, editor, The International Journal
of Expert Systems. Third Quarter. Special Issue on Genetic Algorithms
and Knowledge Bases. JAI Press, 1995.

[Teller, 1994] Astro Teller. The evolution of mental models. In Kenneth E.
Kinnear, editor, Advances In Genetic Programming,pages 199–220. MIT
Press, 1994.

